Noncommutative Approximation: Inverse-closed Subalgebras and Off-diagonal Decay of Matrices

نویسندگان

  • KARLHEINZ GRÖCHENIG
  • ANDREAS KLOTZ
چکیده

We investigate two systematic constructions of inverse-closed subalgebras of a given Banach algebra or operator algebra A, both of which are inspired by classical principles of approximation theory. The first construction requires a closed derivation or a commutative automorphism group on A and yields a family of smooth inverse-closed subalgebras of A that resemble the usual Hölder-Zygmund spaces. The second construction starts with a graded sequence of subspaces of A and yields a class of inverse-closed subalgebras that resemble the classical approximation spaces. We prove a theorem of Jackson-Bernstein type to show that in certain cases both constructions are equivalent. These results about abstract Banach algebras are applied to algebras of infinite matrices with off-diagonal decay. In particular, we obtain new and unexpected conditions of off-diagonal decay that are preserved under matrix inversion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spectral invariance of Besov-Bessel subalgebras

Using principles of the theory of smoothness spaces we give systematic constructions of scales of inverse-closed subalgebras of a given Banach algebra with the action of a d-parameter automorphism group. In particular we obtain the inverse-closedness of Besov algebras, Bessel potential algebras and approximation algebras of polynomial order in their defining algebra. By a proper choice of the g...

متن کامل

Wiener’s lemma for infinite matrices with polynomial off-diagonal decay Le lemme de Wiener pour matrices infinies a decroissance polynomiale des termes non-diagonaux

In this note, we give a simple elementary proof to Wiener’s lemma for infinite matrices with polynomial off-diagonal decay.

متن کامل

Approximate inverse-free preconditioners for Toeplitz matrices

In this paper, we propose approximate inverse-free preconditioners for solving Toeplitz systems. The preconditioners are constructed based on the famous Gohberg-Sememcul formula. We show that if a Toepltiz matrix is generated by a positive bounded function and its entries enjoys the off-diagonal decay property, then the eigenvalues of the preconditioned matrix are clustered around one. Experime...

متن کامل

Decay Properties of Spectral Projectors with Applications to Electronic Structure

Motivated by applications in quantum chemistry and solid state physics, we apply general results from approximation theory and matrix analysis to the study of the decay properties of spectral projectors associated with large and sparse Hermitian matrices. Our theory leads to a rigorous proof of the exponential off-diagonal decay (“nearsightedness”) for the density matrix of gapped systems at ze...

متن کامل

Multiresolution Kernel Approximation for Gaussian Process Regression

(a) (b) (c) Figure: (a) In a simple blocked low rank approximation the diagonal blocks are dense (gray), whereas the off-diagonal blocks are low rank. (b) In an HODLR matrix the low rank off-diagonal blocks form a hierarchical structure leading to a much more compact representation. (c) H2 matrices are a refinement of this idea. (a) In simple blocked low rank approximation the diagonal blocks a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009